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Sandpiles and diffusion-limited reactions
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We establish the equivalence between a one-dimensional sandpile model recently introduced by Chha-
bra et al. [Phys. Rev. A (to be published)], and the diffusion-limited reaction 4 + 4 —0 with a point
source. The equivalence is used to predict the power-law decay of the avalanche size distribution,
P(s)~s 3, in agreement with numerical simulations. This result differs from the mean-field treatment of
Chhabra et al., demonstrating the importance of fluctuations in this low-dimensional system.
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Sandpile models of self-organized criticality [1] are
deterministic cellular automata which are driven to a sta-
tistically steady state by the repeated application of local
stochastic perturbations. Each perturbation consists of
adding a small amount (a “‘grain”) of a conserved quanti-
ty (“sand”) to the system. Whenever a local stability cri-
terion is violated, sand is redistributed locally according
to the automaton rules. The amount of sand (or the num-
ber of sites) affected by a single perturbation constitutes
the size of an avalanche. Since sand can leave the system
only at the open boundaries, a long-ranged transport flow
has to be maintained in the steady state. In many cases
this is sufficient [2—-4] to enforce the establishment of cri-
ticality in the sense of a broad, scaling size distribution of
avalanches.

A particularly simple, one-dimensional sandpile, the lo-
cal limited (L?) model, was introduced by Kadanoff and
co-workers [2]. In this model an integer height variable
H; is associated with each site i =1,..., L of a one-
dimensional lattice. A configuration is stable if all slopes
satisfy S;=H;—H;_;=2. The system is perturbed by
adding a grain (H;—H;+1) at a randomly chosen site.
If, as a consequence, the stability criterion is violated,
two grains of sand are moved downhill from site i to site
i —1. This procedure is repeated until all sites are again
stable, at which point another grain is added. The system
is open at i =1 and closed at i =L, i.e., the stationary
sandpile slopes to the left.

Carlson and co-workers [5] pointed out that sites with
S; =0 (“troughs” [5] or “‘traps” [7]) play a crucial role in
the dynamics of the L2 model. When an avalanche is ini-
tiated by adding a grain to a site j with S; =2, all the sites
between j and the position ji of the nearest trap in the
uphill (right) direction (or, if such a trap does not exist,
the wall at i =L) also become unstable, and a total of
2(jg —Jj) grains (two per site) is set into motion. The
avalanche then slides downhill until its front end en-
counters the first trap in the downhill (left) direction,
where it stops. If there is no trap between j and the abyss
at i =1 the avalanche falls off the pile. Several diverging
length scales can be associated with the spatial distribu-
tion of trap sites [3,5,8] and the resulting avalanche dis-
tribution is surprisingly complex [2,7]. In an attempt to
make the problem more tractable Chhabra, Feigenbaum,
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Kadanoff, Kolan, and Procaccia [7] (CFKKP) recently
introduced a truncated version of the L? model, the L3
model, in which traps are not allowed to form. Conse-
quently the slopes can only take on two values, S;=1,2
[9]. This restriction is enforced by starting with an al-
lowed configuration and simply suppressing all perturba-
tions which would lead, after the termination of all ensu-
ing avalanches [10], to a stable configuration where some
slope S; =0. Given the importance of trap sites [5], this
modification is expected to lead to a behavior which is
qualitatively different from the original model. CFKKP
solved the L*® model in a mean-field approximation and
found a pure power-law avalanche size distribution
P(s)~s* where s denotes the number of grains leaving
the system during an avalanche. Here I show that the L*
model is in fact equivalent to the much studied diffusion-
limited annihilation reaction 4 +A4 —0 [11-13], with
the slope playing the role of the diffusing species and the
avalanches corresponding to the annihilation events.
This equivalence is then used to derive the exact form of
the avalanche distribution.

The main simplifying feature of the L* model is the lo-
cality of the slope dynamics, i.e., dropping a grain on a
site i only affects [10] the slopes at i and i +1. Following
CFKKP we introduce the variables ¢; =S;,—1=0,1. In
order to maintain the restriction €; =20 no sand can be
added to sites i with (¢;,€;,,)=1(0,0), since such a move
would create a trap at i +1. Below we list the outcomes
of the remaining three allowed moves [7]:

(Ei’ef+1):(0’1)~—)(1’0) > (1)
(Ei’€i+1)=(1’0)_)(0’1) ) (2)
(6[,6[+1):(1,1)*—’(0,0) . (3)

Move (1) corresponds simply to the addition of a grain to
a stable site. In move (2) site { becomes unstable, but at
the same time a trap is created at / +1 which limits the
ensuing avalanche to a single site (two grains). Since
there are no traps in the downhill direction, the
avalanche falls off the pile. In the process the trap at
i+1 is filled [5], so that the resulting configuration is
again trap-free [10]. Finally, in move (3) site { is destabi-
lized without the creation of a trap at a neighboring site.
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Consequently the instability spreads all the way to the
wall, and an avalanche of length L —i+1 [mass
2(L —i +1)] slides off the pile. If a grain is added at site
i =L, €; changes according to €; —1—¢€;, correspond-
ing to the boundary condition [7] €, . ;=1.

In order to establish the correspondence with
diffusion-limited annihilation we now interpret ;=1 (0)
to denote the presence (absence) of an A particle at site i.
It is then evident that moves (1) and (2) correspond to the
diffusive motion of particles, while move (3) describes the
pairwise annihilation of two particles at neighboring
sites. Note that the reaction rate is not unity: A pair of
particles will react only if the leftmost one (at site i) is
picked for the next move. However, the value of the re-
action rate is irrelevant provided it is nonzero [11]. The
avalanche distribution consists of two parts, small
avalanches (of unit length) arising from the diffusion step
(2) and large avalanches (of all lengths up to the system
size) associated with the reaction step (3). Since small
avalanches only involve a single particle, their probability
is proportional to the particle density, while the probabil-
ity for a large avalanche of length r (mass s =2r) is equal
to the reaction rate at the distance » =L +1—i from the
wall.

The boundary condition €; . ;=1 provides a steady in-
put of particles at the closed end of the sandpile. We
thus expect the stationary particle density to decay as a
function of the distance » from the boundary. In a con-
tinuum approximation, neglecting density fluctuations,
the density profile can be computed from the equation
(12]

delr,t) _ - % R

ot :D—a;“i"f—O'S(r)—ké (4)

where D is the diffusion constant, o denotes the input
rate, and k the reaction rate. The stationary solution of
(4) is readily seen to decay as 1/r2, in agreement with the
detailed mean-field calculation of CFKKP [7]. Since,
within this approximation, the reaction rate is propor-
tional to €%, we also obtain the avalanche distribution
P(s)~s *as found by CFKKP.

However, diffusion-limited reactions are known to
behave anomalously in low dimensions [11]. For the
A + A—0 reaction, the correct behavior both in the
transient and in the steady-state regime can be obtained
by replacing the quadratic term in (4) by an effective reac-
tion rate [13] proportional to €¥, where X =1+2/d >2 if
the spectral dimension [14] d of the medium is less than
2. For a regular, one-dimensional lattice d =d =1, so
x =3 and (4) predicts a 1/r decay of the density profile, in
agreement with an exact calculation for a related one-
dimensional lattice model [12]. Since the size distribution
of large avalanches is determined by the spatial decay of
the reaction rate, we conclude that P(s)~e>~s 3, in
contrast to the s ~* decay obtained by CFKKP. As usu-
al, the breakdown of the mean-field approximation im-
plies the presence of strong correlations. Indeed, since
microscopically the reaction rate at site i is given by
(€;€ 4,7, we see that

(€€ 1) ~1/rP<<(e )€ ) ~1/7%, (5)
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FIG. 1. Simulation results for an L3 sandpile of size L = 500.
The squares show the reduced slope {¢;) as a function of the
distance r =L +1—i from the closed boundary, and the dots
show the probability distribution for the avalanche length (the
avalanche mass is 27). The full lines indicate the predicted
power laws. The data were obtained by averaging over 2.5 X 10°
attempted additions per site, which resulted in 8.54X10°
avalanches.

i.e., particles at neighboring sites are strongly anticorre-
lated, despite the fact that the density of particles van-
ishes for r — .

Numerical simulations of the L* model were carried
out in order to test these predictions (Fig. 1). Power-law
fits to the density profile and the avalanche distribution
show these quantities to decay as r~ %% and r 316, re-
spectively, in excellent agreement with the expected be-
havior.

In closing, it should be noted that the power-law decay
of the avalanche distribution in the L3 model does not
arise as a consequence of mass balance requirements
[2,3,4]. The 1/r decay of the density profile implies that
the number of particles in a system of size L is of the or-
der InL. Thus the probability that an attempt to add a
grain of sand at a randomly chosen position on the pile
will be successful is approximately InL /L, and the proba-
bility that such a move will trigger a small avalanche is of
the same order. In contrast, the probability for a large
avalanche is only of the order 1/L. Since the 1/s° size
distribution of large avalanches has a finite first moment,
we see that the fraction of the total mass flow through the
system which is carried by large rather than small
avalanches vanishes as 1/InL for large L, i.e., the large
avalanches are irrelevant for maintaining mass balance.
The prominence of the small avalanche peak at r =1 in
Fig. 1 is an indication of this fact. As in a recently intro-
duced noncritical variant of the L? model [6], the mass
transport through small avalanches is sufficient to main-
tain stationarity because every avalanche that is triggered
in the bulk of the system propagates all the way to the
open boundary.

I would like to thank Joshua Socolar and Kwan-tai
Leung for helpful discussions, Ashvin Chhabra for mak-
ing Ref. [7] available to me prior to publication, and Sid
Redner and Zoltan Racz for pointing out Ref. [12].



732 BRIEF REPORTS 47

*Present address: Institut fiir Festkdrperforschung,
Forschungszentrum Jiilich, P.O. Box 1913, W-5170 Jiilich,
Germany.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59,
381 (1987); Phys. Rev. A 38, 364 (1988).

[2] L. P. Kadanoff, S. R. Nagel, L. Wu, and S.-M. Zhou, Phys.
Rev. A 39, 6524 (1989).

[3]7J. Krug, J. Stat. Phys. 66, 1635 (1992).

[4] D. Dhar, Physica A 186, 82 (1992).

[51J. M. Carlson, J. T. Chayes, E. R. Grannan, and G. H.
Swindle, Phys. Rev. Lett. 65, 2547 (1990); Phys. Rev. A 42,
2467 (1990).

[6]J. Krug, J. E. S. Socolar, and G. Grinstein, Phys. Rev. A
46, 4479 (1992).

[7] A. B. Chhabra, M. J. Feigenbaum, L. P. Kadanoff, A. J.
Kolan, and I. Procaccia, Phys. Rev. A (to be published).

[8] L. P. Kadanoff, A. B. Chhabra, A. J. Kolan, M. J. Feigen-
baum, and I. Procaccia, Phys. Rev. A 45, 6095 (1992).

[9] A different two-state approximation to the L? model was
proposed by Carlson et al. [5].

[10] As in previous studies [3,5,6,7] of the L? model avalanches
are considered to be instantaneous, i.e., the addition of a
grain is pictured to immediately take the sandpile from
one stable configuration to another, with the net loss (or
gain) of some number of grains; the dynamics is “integrat-
ed” between successive additions of sand. In particular,
the restriction S; > 1 in the L* model may be violated dur-
ing an avalanche, but not in the final stable configuration.

[11] K. Kang and S. Redner, Phys. Rev. A 32 435 (1985), and
references therein.

[12] Z. Cheng, S. Redner, and F. Leyvraz, Phys. Rev. Lett. 62,
2321 (1989). These authors actually study the coagulation
reaction 4 + A — A rather than the annihilation reaction
A + A—0, but the scaling properties of the two processes
are expected to be the same [see, e.g., L. Peliti, J. Phys. A
19, L365 (1985)].

[13] R. Kopelman, J. Stat. Phys. 42, 185 (1986); C. R. Doering
and D. ben-Avraham, Phys. Rev. A 38, 3035 (1988).

[14] R. Rammal and G. Toulouse, J. Phys. (Paris) Lett. 44, L13
(1983).



